首页 | 本学科首页   官方微博 | 高级检索  
     


Application of EIS and salt spray tests for investigation of the anticorrosion properties of polyurethane-based nanocomposites containing Cr2O3 nanoparticles modified with 3-amino propyl trimethoxy silane
Authors:MJ Palimi  M Rostami  M Mahdavian  B Ramezanzadeh
Affiliation:1. Institute for Color Science and Technology (ICST), PO 16765-654, Tehran, Iran;2. Department of Nanomaterials and Nanocoatings, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran, Iran;3. Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran, Iran
Abstract:The Cr2O3 nanoparticles were modified with 3-amino propyl trimethoxy silane in order to obtain proper dispersion and increment compatibility with the polyurethane coating matrix. The nanocomposites prepared were applied on the St-37 steel substrates. The existence of 3-amino propyl trimethoxy silane on the surface of the nanoparticles was investigated by Fourier transform infrared (FTIR) spectroscopy and thermal gravimetric analysis (TGA). Dispersion of the surface modified particles in the polyurethane coating matrix was studied by a field emission-scanning electron microscope (FE-SEM). The electrochemical impedance spectroscopy (EIS) and salt spray tests were employed in order to evaluate the corrosion resistance of the polyurethane coatings. Polarization test was done in order to investigate the corrosion inhibition properties of the Cr2O3 nanoparticle on the steel surface in 3.5 wt.% NaCl solution. The adhesion strengths of the coatings were evaluated by pull-off adhesion tester before and after 120 days immersion in 3.5 wt.% NaCl solution. FT-IR and TGA analyses revealed that surface modification of the nanoparticles with 0.43 silane/5 g pigment resulted in the greatest amount of silane grafting on the surface of particles. Results obtained from FE-SEM analysis showed that the surface modified nanoparticles dispersed in the coating matrix properly. Results obtained from EIS and salt spray analyses revealed that the surface modified particles enhanced the corrosion protection performance of the polyurethane coating considerably. The improvement was more pronounced for the coating reinforced with 0.43 g silane/5 g pigment. Moreover, the adhesion loss decreased in the presence of surface modified nanoparticles with 0.43 silane/5 g pigment.
Keywords:Surface modification  Cr2O3 nanoparticles  3-Amino propyl trimethoxy silane  EIS  Salt spray
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号