首页 | 本学科首页   官方微博 | 高级检索  
     


Anti-thermal quenching of Eu3+ luminescence in negative thermal expansion Zr(WO4)2
Affiliation:1. School of Chemistry and Materials, Huizhou University, Huizhou, China;2. Department of Materials Science & Engineering, Southern University of Science and Technology, Shenzhen, China;3. School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
Abstract:Thermal quenching of luminescence is the most critical problem for rare earth doped phosphors used in light-emitting diodes (LEDs). Herein, we demonstrate that thermal quenching can be considerably suppressed via the negative thermal expansion effect in Zr(WO4)2 that serves as host for Eu3+ red emission. The photoluminescence (PL) intensity is surprisingly enhanced by 130% when the temperature is raised from room temperature to 100 °C. As temperature further increases to 160 °C, the PL intensity turns to reduce, which is still 1.4 times of that at room-temperature. Moreover, Zr(WO4)2:15%Eu phosphor has good durability, which still exhibits strong red luminescence (only 13% loss) after being kept in 85 °C/85% relative humidity chamber for 240 h. The anti-thermal quenching of Eu3+ luminescence can be ascribed mainly to the following two factors: first one is the thermal-enhanced energy transfer between Eu3+ ions induced by the contraction of Zr(WO4)2 unit-cell volume that leads to the strong structural rigidity of host lattice; second one would be electron traps in the host that favors the increase of electrons on the excited energy levels. This important anti-thermal quenching effect induced from the negative thermal expansion of the host matrix may stimulates a novel and efficient approach to design highly thermal stable phosphors for next-generation LEDs.
Keywords:Phosphor  White LED  Negative thermal expansion  Anti-quenching
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号