首页 | 本学科首页   官方微博 | 高级检索  
     


Eco-friendly poly(vinyl alcohol)/delaminated V2C MXene high-k nanocomposites with low dielectric loss enabled by moderate polarization and charge density at the interface
Affiliation:1. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;2. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
Abstract:High-dielectric-constant (high-k) polymer/conductor composites with low dielectric loss are desirable for energy storage. However, high leakage currents from interfacial regions with high charge density are difficult to handle. In this work, high permittivity and low dielectric loss were achieved in poly(vinyl alcohol) (PVA)/V2C MXene nanocomposite films fabricated by solution casting by taking advantage of the interfacial compatibility and moderate interfacial charge density of the nanocomposites. Water-soluble PVA was utilized as the polymer matrix. Delaminated V2C MXene nanosheets with appropriate conductivity were prepared and used as the filler. The mild interface polarization of the nanocomposites was responsible for achieving favourable permittivity values. The small gap between the work functions of PVA and V2C contributed to moderate interfacial charge density values and thus low dielectric loss values. A proportional correlation between the interfacial charge density and the conductivity of composites was also verified. The depth of charge injection from the MXene to PVA was found to be half of the interlamellar spacing of the delaminated MXene. The dependence of the electrical properties of the nanocomposites on the frequency and MXene content was also studied. The composite with 4 wt% MXene exhibited a permittivity of ~24 (16 times that of PVA) and a dielectric loss of ~0.14 (1.5 times that of PVA) at 1 kHz, as well as breakdown strength of ~31 MV m?1 (63% of PVA). This work might enable environmentally friendly fabrication of promising composite dielectrics.
Keywords:MXene  Composite  Dielectric  Interface
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号