首页 | 本学科首页   官方微博 | 高级检索  
     


Developing a hollow glass microsphere/geopolymer thermal insulation composite for hot metal surface coating
Affiliation:1. Department of Mat Sci & Eng, Eskisehir Technical University, Eskisehir, Turkey;2. TUPRAS R&D Center, Kocaeli, Turkey;3. Ceramic Research Center, Eskisehir, Turkey
Abstract:Manufacturing inorganic thermal insulation materials with superior properties such as low thermal conductivity (k < 0.1 W/mK) and high mechanical properties in terms of adhesion strength is critical for energy efficiency in energy-intense industries. Geopolymer-based composites composing of hollow glass microspheres (HGMs), waste fly ash (FA), and metakaolin (MK) were successfully applied on hot (T~300 °C) metal surfaces via spray deposition technique. The effect of Si/Al and Na/Al mole ratios and HGM loading on geopolymer composites' physical, microstructural, thermal, and adhesion strength properties were explored. The best composite composition was obtained when Si/Al mole ratio, Na/Al mole ratio, and HGM loading were 2.5, 1.0, and 10 wt %, respectively. This composition achieved an HGM/geopolymer composite material with low thermal conductivity (k ~ 0.05 W/mK), high adhesion strength (~5.0 MPa), and high stability under immersion in water and vibration environments (particularly exposed to water). The results showed that HGM/geopolymer composites could be used as a thermal insulation material in energy-intense industries.
Keywords:Geopolymer  Hollow glass microsphere (HGM)  Industrial waste  Thermal insulation  Hot metal surface
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号