首页 | 本学科首页   官方微博 | 高级检索  
     


Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications
Authors:D Narsimulu  S Vinoth  ES Srinadhu  N Satyanarayana
Affiliation:1. Department of Physics, Pondicherry University, Puducherry 605014 India;2. Centre for Nanoscience & Technology, Puducherry 605014 India;3. Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
Abstract:SnO2 nanosheets were synthesized using microwave hydrothermal method without using a surfactant and organic solvents. Formation of pure nanocrystalline rutile phase of SnO2 sample was confirmed by X-ray diffraction (XRD) results and the average crystallite size of SnO2 sample calculated using Scherrer's formula and XRD data is found to be 6 nm. HR-TEM, SAED and EDX results showed the formation of agglomerated nanosize sheets like morphology with high porous structured SnO2 powder. Further, the formation of high porous structured SnO2 powder was confirmed from BET surface area results (59.28 m2 g?1). The electrochemical performance of the lithium-ion battery made up of SnO2 nanosheets, as an anode, was tested through the cyclic voltammetry and galvanostatic charge-discharge measurements. The galvanostatic charge-discharge results of the lithium-ion battery showed good discharge capacity of 257.8 mAh g?1 after 50 cycles at a current density of 100 mA g?1. The improved electrochemical properties may be due to the formation of a unique nanosize sheets type morphology with high porous structured SnO2 powder. High porous structured nanosize sheets type morphology of SnO2 can help to reduce the diffusion length and sustain the volume changes during the charging-discharging process.Hence, high porous structured nanosize sheets morphology of SnO2 prepared using the microwave hydrothermal method without using a surfactant and organic solvents can be a better anode material for lithium ion battery applications.
Keywords:Microwave hydrothermal  Anode material  Lithium-ion battery  Electrical and electrochemical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号