首页 | 本学科首页   官方微博 | 高级检索  
     


Ferroelectric and electromechanical performance of diverse engineered states of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics
Authors:Mingqiang Cheng  Erding Zhao  Fangjian Jiang  Xiaodong Jiang  Ze Fang  Feng Li  Wanneng Ye  Yalin Qin  Yongcheng Zhang
Abstract:The materials processing history has a great influence on their properties and finally determines their application effect. In this paper, the ferroelectric, polarization-switching current, and strain properties of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics were studied in fresh state, aged state, and poled state, respectively. Compared with the symmetric polarization-electric-field (P-E) hysteresis loops, current-density-electric-field (J-E) curves, and bipolar electric-field-induced strain (S-E) curves in fresh state samples, asymmetric P-E loops, J-E curves, and bipolar S-E curves were obtained in poled state samples. Well-aged-state samples exhibit double hysteresis P-E loop, four peaks J-E curves, and symmetric S-E curves without negative strain. The symmetry-conforming short-range order (SC-SRO) principle of point defects and internal electric field Ei is employed to clarify the different phenomenon of three states. Results indicated that randomly oriented defect polarization PD in aged samples can reverse the spontaneous polarization PS back and result in the double hysteresis P-E loop and four peaks J-E curves. The oriented PD and resulting Ei in poled-state samples will lead to the asymmetric loops and strain memory effect.
Keywords:Double hysteresis loops  Strain memory effect  Defect polarization  Symmetry-conforming short-range order  Internal bias electric field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号