首页 | 本学科首页   官方微博 | 高级检索  
     


Hierarchical MnO2@NiCo2O4@Ti3SiC2/carbon cloth core-shell structure with superior electrochemical performance for all solid-state supercapacitors
Authors:Weikang Yan  Jianqiang Bi  Weili Wang  Zheng Xing  Rui Liu  Xuxia Hao  Xicheng Gao  Mingzhe Leng
Abstract:Core-shell hierarchical structured composites have demonstrated great advantages in numerous energy storage devices. In particular, structured composites with rationally structural components and controllable morphology are the most effective in enhancing electrochemical properties. In this work, MnO2@NiCo2O4@Ti3SiC2/CC (carbon cloth) core-shell hierarchical structured composites were designed and successfully synthesized via electrospinning followed by a two-step hydrothermal reaction. The Ti3SiC2/CC nanofibers and core-shell nanoarrays were able to improve the specific capacitance and cycling stability. In the three-electrode system, the specific capacitance of MnO2@NiCo2O4@Ti3SiC2/CC was observed as 1938.2 F/g at a current density of 1 A/g, while the rate capability retention was observed as 81.7% between 1 and 10 A/g. Furthermore, a superior cycling stability was observed following 5000 cycles with a specific capacitance retention rate of 55.4%. Employing MnO2@NiCo2O4@Ti3SiC2/CC as the all solid-state supercapacitor positive electrode exhibited a high energy density of 58.0 W h/kg at the power density of 800 W/kg. Results demonstrate the potential of the MnO2@NiCo2O4@Ti3SiC2/CC as an electrode material with phenomenal electrochemical properties for supercapacitors.
Keywords:Hierarchical structure  Core-shell nanoarrays  Electrospinning  All solid-state supercapacitors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号