首页 | 本学科首页   官方微博 | 高级检索  
     


Degradation of 1‐amino‐4‐bromoanthraquinone‐2‐sulfonic acid using combined airlift bioreactor and TiO2‐photocatalytic ozonation
Authors:Jing Wang  Guangfei Liu  Hong Lu  Ruofei Jin  Jiti Zhou
Affiliation:Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, , Dalian, 116024 China
Abstract:BACKGROUND: Traditional treatment systems failed to achieve efficient degradation of anthraquinone dye intermediates at high loading. Thus, an airlift internal loop reactor (AILR) in combination with the TiO2‐photocatalytic ozonation (TiO2/UV/O3) process was investigated for the degradaton of 1‐amino‐ 4‐bromoanthraquinone‐2‐ sulfonic acid (ABAS). RESULTS: The AILR using Sphingomonas xenophaga as inoculum and granular activated carbon (GAC) as biocarrier, could run steadily for 4 months at 1000 mg L?1 of the influent ABAS. The efficiencies of ABAS decolorization and chemical oxygen demand (COD) removal in AILR reached about 90% and 50% in 12 h, respectively. However, when the influent ABAS concentration was further increased, a yellow intermediate with maximum absorbance at 447 nm appeared in AILR, resulting in the decrease of the decolorization and COD removal efficiencies. Advanced treatment of AILR effluent indicated that TiO2/UV/O3 process more significantly improved the mineralization rate of ABAS bio‐decolorization products with over 90% TOC removal efficiency, compared with O3, TiO2/UV and UV/O3 processes. Furthermore, the release efficiencies of Br? and SO42? could reach 84.5% and 80.2% during TiO2/UV/O3 treatment, respectively, when 91.5% TOC removal was achieved in 2 h. CONCLUSION: The combination of AILR and TiO2/UV/O3 was an economic and efficient system for the treatment of ABAS wastewater. © 2012 Society of Chemical Industry
Keywords:1‐amino‐4‐bromoanthraquinone‐2‐sulfonic acid  airlift internal loop reactor  photocatalytic ozonation  bio‐decolorization  mineralization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号