首页 | 本学科首页   官方微博 | 高级检索  
     


Advanced Understanding of the Electron Transfer Pathway of Cytochrome P450s
Authors:Prof?Dr Chun-Chi Chen  Prof?Dr Jian Min  Dr Lilan Zhang  Dr Yu Yang  Prof?Dr Xuejing Yu  Prof?Dr Rey-Ting Guo
Affiliation:1. State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062 P. R. China

These authors contributed equally to this work.;2. State Key Laboratory of Biocatalysis and Enzyme Engineering Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, Wuhan, Hubei, 430062 P. R. China

Abstract:Cytochrome P450s are heme-thiolate enzymes that participate in carbon source assimilation, natural compound biosynthesis and xenobiotic metabolism in all kingdoms of life. P450s can catalyze various reactions by using a wide range of organic compounds, thus exhibiting great potential in biotechnological applications. The catalytic reactions of P450s are driven by electron equivalents that are sourced from pyridine nucleotides and delivered by cognate or matching redox partners (RPs). The electron transfer (ET) route from RPs to P450s involves one or more redox center-containing domains. As the rate of ET is one of the main determinants of P450 efficacy, an in-depth understanding of the P450 ET pathway should increase our knowledge of these important enzymes and benefit their further applications. Here, the various P450 RP systems along with current understanding of their ET routes will be reviewed. Notably, state-of-the-art structural studies of the two main types of self-sufficient P450 will also be summarized.
Keywords:catalytic reactions  cytochromes  electron transport  protein structure  self-sufficient P450
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号