首页 | 本学科首页   官方微博 | 高级检索  
     


Radiation-induced synthesis of poly(vinylpyrrolidone) nanogel
Authors:Jung-Chul An  Byungnam Kim  Dianne Poster  Joseph Silverman
Affiliation:a Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
b Department of Chemistry, The Catholic University of America, Washington, DC 20064, USA
c Material Measurement Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
d Biochemical Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899, USA
Abstract:Studies of the radiation-induced synthesis of poly(vinylpyrrolidone) (PVP) nanogels, intended to provide a basis for obtaining intra-molecular cross-linked products, which are more useful in drug delivery, show that a sharp change in the controlling mechanism from inter-molecular to intra-molecular cross-linking occurs above a threshold temperature around 50 °C-55 °C, even though the rate of inter-molecular cross-linking is enhanced as the temperature is raised. When aqueous solutions of PVP are irradiated, the activation energy of the decay of the PVP· radical is observed to rise sharply above this threshold temperature. This can be attributed to the collapse of the polymer chains, which occurs at temperatures above approximately 55 °C and leads to a reduction of the Rh of the irradiated polymer molecules at 77 °C to (44 ± 3) % of that of PVP molecules that were not irradiated at 20 °C, as shown by the results of AFFFF measurements. The abrupt transition to a mechanism controlled by intra-molecular cross-linking is due to the thermal collapse of the polymer structure. This accounts for the observation that activation energy is higher within the temperature range above 55 °C. Higher pulse repetition rates during electron irradiation also promote intra-molecular cross-linking.
Keywords:Nanogel   Poly(vinylpyrrolidone)   Cross-linking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号