首页 | 本学科首页   官方微博 | 高级检索  
     


Batch selection,assignment and sequencing in multi-stage multi-product processes
Authors:Pradeep Prasad  Christos T Maravelias
Affiliation:1. Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece;2. Chemical Process and Energy Resource Institute (CPERI), Centre for Research and Technology Hellas (CERTH), PO Box 60361, 57001, Thessaloniki, Greece;3. Cranfield University, School of Energy, Environment & Agrifood, Bedfordshire MK43 0AL, United Kingdom;4. Frinsa del Noroeste S.A., Avenida Ramiro Carregal Rey – Parcela 29, Ribeira, La Coruña, Spain;5. ASM Soft S.L., Crta. De Bembrive 109, Vigo, Spain
Abstract:The scheduling of multi-product, multi-stage batch processes is industrially important because it allows us to utilize resources that are shared among competing products in an optimal manner. Previously proposed methods consider problems where the number and size of batches is known a priori. In many instances, however, the selection and sizing (batching) of batches is or should be an optimization decision. To address this class of problems we develop a novel mixed-integer linear programming (MILP) formulation that involves three levels of discrete decisions: selection of batches, assignment of batches to units and sequencing of batches in each unit. Continuous decision variables include sizing and timing of batches. We consider various objective functions: minimization of makespan, earliness, lateness and production cost, as well as maximization of profit, an objective not addressed by previous multi-stage scheduling methods. To enhance the solution of the proposed MILP model we propose symmetry breaking constraints, develop a preprocessing algorithm for the generation of constraints that reduce the number of feasible solutions, and fix sequencing variables based upon time window information. The model enables the optimization of batch selection, assignment and sequencing decisions simultaneously and is shown to yield solutions that are better than those obtained by existing sequential optimization methods.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号