首页 | 本学科首页   官方微博 | 高级检索  
     


Robust Superhydrophobic Fabric for Durability,Self-Cleaning,and Oil/Water Separation via Thiol–Acrylate Polymerization
Authors:Xihan Fu  Shuang Wang  Zheng Liu  Yaofa Luo  Xiaosheng Du  Haibo Wang  Mi Zhou  Xu Cheng  Zongliang Du
Affiliation:1. College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 P. R. China;2. Jiangsu Province Special Equipment Safety Supervision and Inspection Institute, Wuxi, 214170 P. R. China;3. College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065 P. R. China

The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, 610065 P. R. China

Abstract:In recent years, highly efficient oil/water separation materials have brought much attention. It requests superhydrophobic surfaces with a rapid and facile separation process, excellent durability, and large-scale fabrication. Herein, a facile vapor-liquid sol-gel, and free radical polymerization reaction method to prepare the durable and robust superhydrophobic cotton fabric is proposed. Moreover, the fabric can be used for highly efficient and various oil/water separation. It is prepared via a simple two-step process, including a vapor-liquid sol-gel process to deposit with thiols particles, and then followed a free radical polymerization reaction to graft 2,2,3,4,4,4-hexafluorobutyl methacrylate. Scanning electron microscopy and Fourier transform infrared spectrometry prove that the rough structures are generated from the hydrolysis condensation reaction between tetraethyl orthosilicate and 3-mercaptopropyltriethoxysilane. As a result, the synthetic chemical composition provided by the natural fabric and silica nanoparticles synergistically construct a superhydrophobic surface with water contact angles and shedding angle of 158° and 9°, respectively. Additionally, the treated fabric exhibits excellent chemical resistance and self-cleaning ability. Remarkably, the fabric still retains superhydrophobic and excellent mechanical robustness after 30 cycles of various oil/water separation. In summary, the resultant fabrics with excellent chemical resistance, remarkable mechanical robustness, and versatile separation abilities have potential applications in various oil/water separations.
Keywords:chemical resistance  cycle oil/water separation  mechanical robustness  superhydrophobic materials  vapor–liquid sol-gel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号