首页 | 本学科首页   官方微博 | 高级检索  
     


Cuprous-based composite ionic liquids for the selective absorption of CO: Experimental study and thermodynamic analysis
Authors:Duan-Jian Tao  Xue-Cong An  Zi-Teng Gao  Zhang-Min Li  Yan Zhou
Affiliation:1. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China;2. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China

Contribution: Data curation (equal), Formal analysis (equal), ?Investigation (equal), Methodology (equal);3. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China

Contribution: Formal analysis (equal), Methodology (equal), Writing - review & editing (equal);4. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China

Contribution: Data curation (equal), Methodology (equal), Writing - review & editing (equal);5. Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China

Contribution: Data curation (equal), Methodology (equal), Software (equal), Supervision (equal)

Abstract:Three cuprous-based composite ionic liquids (ILs) EimH]OAc]–xCuOAc (x = 0.5, 0.6, 0.7) were prepared and employed for efficient absorption of CO. It is shown that the cuprous composite IL EimH]OAc]–0.6CuOAc exhibited the largest absorption capacity for CO (0.031 g/g at 293.15 K and 1 bar) and had a record CO/N2 selectivity of 967, which is better than most of common ILs and solvents reported in the literature. The results of Fourier transform infrared (FTIR) spectra, electrospray ionization mass spectrometry (ESI-MS) analysis, and theoretical calculations reveal that such superior CO capacity mainly resulted from two kinds of chemical interaction between CO and the active anionic species Cu(OAc)2]? in EimH]OAc]–0.6CuOAc. Furthermore, a “deactivated IL model” was further proposed to accurately describe the absorption behavior of CO in EimH]OAc]–0.6CuOAc, in which the thermodynamic parameters including Henry's law constants, reaction equilibrium constants, and absorption enthalpies were estimated by the correlation of the experimental solubilities of CO.
Keywords:absorption  carbon monoxide  cuprous  ionic liquids  thermodynamic model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号