首页 | 本学科首页   官方微博 | 高级检索  
     


Air impingement and intermittent drying: Application to apple and to mango
Authors:Virginie Boy  Wajdi Ben Khalifa  Lucie Drvillon  Yves Leme  Thomas Lendormi  Jean‐Louis Lanoisell
Affiliation:Virginie Boy,Wajdi Ben Khalifa,Lucie Drévillon,Yves Lemée,Thomas Lendormi,Jean‐Louis Lanoisellé
Abstract:An original drying process combining air impingement and intermittent drying was studied on apple slices and mango cubes. The influence of four operating parameters (air velocity, drying/tempering periods, upper height, and air temperature) on the drying time and on the drying rate was evaluated. Continuous and intermittent drying were compared. The intermittency α = 1/7 (τon = 10 seconds and τoff = 60 seconds) gave the best results. A time savings of 54% for apple and 67% for mango was reached. In continuous drying, a time savings of 4620 seconds was observed by increasing the air velocity from 6 to 40 m s?1 for apple. Air temperatures of 328 K for apple and of 328 K or 338 K for mango were determined as optimum to prevent case‐hardening. Experimental results were fitted with the analytical solution of Fick's second law and the modified Page equation (average values R2 = 0.985 and 0.961, for apple and mango, respectively). For both products, the apparent moisture diffusivity Dapp, the drying constant k, the drying coefficient n, and the activation energy Ea, were identified. Activation energies calculated from the analytical solution were 30.3 and 36.8 kJ mol?1 and were 25.4 and 30.0 kJ mol?1 using the modified Page equation for apple and mango, respectively. Mango has an increased temperature sensitivity and thus will need less energy for drying than apple.
Keywords:air drying  fruit  impingement  intermittent  modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号