首页 | 本学科首页   官方微博 | 高级检索  
     


Free radical chemistry of coal liquefaction: role of molecular hydrogen
Authors:Lonnie W Vernon
Affiliation:Exxon Research and Engineering Company, P.O. Box 4255, Bay town, Texas 77520, USA
Abstract:Model compounds containing the types of carboncarbon bonds thought to be present in coal were pyrolyzed in the presence of tetralin and molecular hydrogen at 450 °C. The relative rates of conversion of the model structures are predictable from the bond dissociation energies of the compounds. Conversion of dibenzyl in the presence of both tetralin and molecular hydrogen or in the presence of hydrogen alone proceeds along two parallel reaction paths. Toluene is produced by a thermal cracking reaction in which the rate-controlling step is the thermal cleavage of the β-bond in dibenzyl. Benzene and ethylbenzene are produced by a hydrocracking reaction. The rate of the hydrocracking reaction is directly proportional to the hydrogen pressure. The strong bond in diphenyl is hydrocracked in a system containing both molecular hydrogen and a source of free radicals. These studies on model coal structures offer firm evidence that molecular hydrogen can participate directly in free radical reactions under coal liquefaction conditions. Under some conditions molecular hydrogen can compete with a good donor solvent to stabilize the thermally produced free radicals. Molecular hydrogen can also promote some hydrocracking reactions in coal liquefaction that do not occur to an appreciable extent in the presence of only donor.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号