首页 | 本学科首页   官方微博 | 高级检索  
     


An investigation of mercury distribution and speciation during coal combustion
Authors:Yewen Tan  Renata Mortazavi  Bob Dureau  Mark A Douglas
Affiliation:CANMET Energy Technology Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, Ont., Canada K1A 1M1
Abstract:A multi-field electrostatic precipitator (ESP) and a two-stage condensing heat exchanger (CHX®) have been added to the pilot scale Vertical Combustion Research Facility (VCRF) in CETC-O to further research into integrated emissions control for coal fired power plants. A series of combustion trials were conducted on the VCRF with three different coals (bituminous, sub-bituminous and lignite) to study mercury distribution and speciation at various VCRF locations. Results showed that, with the bituminous coal, as the flue gas cools down from 700 to 200 °C, 80% of total mercury in the gas phase existed in oxidized form and 20% in elemental form. For sub-bituminous and lignite coals, elemental mercury was the dominant form throughout the system. Analysis of deposited ash samples showed that oxidized mercury can be absorbed on carbon-rich ash deposits, although overall only a very small percentage of total mercury was absorbed on the ash. The potential of the CHX® at removing mercury from the flue gas was also explored. Results indicated that, using wet scrubbing, the CHX® was able to remove 98% of oxidized mercury. Though elemental mercury went through the system unabated, it is suggested that, with appropriate agent to oxidize elemental mercury in the CHX®, it is conceivable to use CHX® to remove both oxidized and elemental mercury. Finally, mercury balance was performed and good mercury balance was obtained across the VCRF, validating our sampling procedures and analysis methods.
Keywords:Coal combustion  Mercury  Mercury speciation  Condensing heat exchanger
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号