首页 | 本学科首页   官方微博 | 高级检索  
     


Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization
Authors:Nanying NingSirui Fu  Wei ZhangFeng Chen  Ke Wang  Hua DengQin Zhang  Qiang Fu
Affiliation:College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
Abstract:Polymer/filler composites have been widely used in various areas. One of the keys to achieve the high performance of these composites is good interfacial interaction between polymer matrix and filler. As a relatively new approach, the possibility to enhance polymer/filler interfacial interaction via crystallization of polymer on the surface of fillers, i.e., interfacial crystallization, is summarized and discussed in this paper. Interfacial crystallization has attracted tremendous interest in the past several decades, and some unique hybrid crystalline structures have been observed, including hybrid shish-kebab and hybrid shish-calabash structures in which the filler served as the shish and crystalline polymer as the kebab/calabash. Thus, the manipulation of the interfacial crystallization architecture offers a potential highly effective route to achieve strong polymer/filler interaction. This review is based on the latest development of interfacial crystallization in polymer/filler composites and will be organized as follows. The structural/morphological features of various interfacial crystallization fashions are described first. Subsequently, various influences on the final structure/morphology of hybrid crystallization and the nucleation and/or growth mechanisms of crystallization behaviors at polymer/filler interface are reviewed. Then recent studies on interfacial crystallization induced interfacial enhancement ascertained by different research methodologies are addressed, including a comparative analysis to highlight the positive role of interfacial crystallization on the resultant mechanical reinforcement. Finally, a conclusion, including future perspectives, is presented.
Keywords:2d, two dimensional   AD-MWNTs, multi wall carbon nanotubes synthesized by arc discharge method   AFM, atomic force microscopy   b, thickness of polymer coating layer   CF, carbon fiber   CNF, carbon nanofiber   CNT, carbon nanotube   CNTs, carbon nanotubes   CTE, coefficient of thermal expansion   CVD, chemical vapor deposition   CVD-MWNTs, multi wall carbon nanotubes synthesized by CVD method   DBS, 1,3:2,4-dibenzylidene glucitol   Df, fiber diameter   DMA, dynamic mechanical analysis   DMAc, N,N-dimethyl acetamide   DMF, N,N-dimethyl formamide   DMSO, dimethyl sulfoxide   DPIM, dynamic packing injection molding technology   DSC, differential scanning calorimetry   Fmax, maximum pullout force   FTIR, Fourier-transform infrared spectroscopy   GF, glass fiber   GONPs, graphite oxide nanoplatelets   HDPE, high density polyethylene   HDT, thermal distortion temperature   HMCF, ultrahigh-modulus carbon fiber   HMW-PE, high molecular weight PE   HMW-PP, high molecular weight polypropylene   HOPG, highly oriented pyrolytic graphite   HSC, hybrid shish-calabash   HSK, hybrid shish-kebab   H-T equation, Halpin-Tsai equation   HTCF, high-tenacity carbon fiber   IFSS, interfacial shear strength   IMCF, intermediate-modulus carbon fiber   iPP, isotactic polypropylene   K-BrBz, potassium 4-bromobenzoate   lc/D, critical aspect ratio   lc, critical effective length   lemb, fiber embedded length   LLDPE, linear low density polyethylene   lm, mean fragment length of fiber   LMW-PE, low molecular weight PE   LMW-PP, low molecular weight polypropylene   MAPP, maleic anhydride grafted polypropylene   MD, molecular dynamics   MoS2, molybdenum disulfide   MWNT, multi wall carbon nanotube   MWNTs, multi wall carbon nanotubes   NF, natural fiber   NHSK, nanohybrid shish-kebab   P3HT, poly (3-hexylthiophene)   PA, polyamide   PA-12, polyamide-12   PA-6, polyamide-6   PAN, polyacrylonitrile   PBT, polybutylece terephthalate   PCL, polycaprolactone   PE, polyethylene   PE-b-PEO, polyethylene-b-poly ethylene oxide   PEEK, poly (ether ether ketone)   PEO, poly ethylene oxide   PET, poly(ethylene terepthalate)   PHBV, poly(hydroxybutyrate-co-hydroxyvalerate)   PLLA, poly(  smallcaps"  >l-lactide)   PP, polypropylene   PPDT, poly (p-phenylene terephthalamide)   Pp-g-MA, polypropylene grafted maleic anhydride   PPS, poly (phenylene sulfide)   PVA, poly(vinyl alcohol)   PVDF, poly(vinylidene fluoride)   rf, fiber radius   SC CO2, supercritical CO2   SEM, scanning electron microscopy   SMCW, SiO2-MgO-CaO whisker   sPP, syndiotactic polypropylene   sPS, syndiotactic polystyrene   SWNT, single wall carbon nanotube   SWNTs, single wall carbon nanotubes   TC, transcrystallinity   TEM, transmission electron microscopy   UHMCF, ultrahigh modulus carbon fiber   UHMWPE, ultrahigh molecular weight polyethylene   Vf, fiber volume fraction   VGCF, vapor grown carbon fibers   WAXD, wide-angle X-ray diffraction   η0, orientation efficiency factor of fiber   ηl, length efficiency factor of fiber   σc, composite strength   σf, fiber tensile strength   σm, basal polymer strength   σs, shear strength at the edge of the interfacial layer region   τi, interfacial shear strength
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号