首页 | 本学科首页   官方微博 | 高级检索  
     

磁场作用下冷冻铸造法制备仿生材料研究进展
引用本文:阿拉腾沙嘎,陈冠宏,陈星. 磁场作用下冷冻铸造法制备仿生材料研究进展[J]. 硅酸盐通报, 2021, 40(7): 2348-2359
作者姓名:阿拉腾沙嘎  陈冠宏  陈星
作者单位:吉林建筑大学材料科学与工程学院,长春 130117
基金项目:国家自然科学基金(51741406,51801070)
摘    要:随着科技的迅速发展,对材料的性能提出了更高的要求,迫切需要开发新型轻质高性能结构材料,即低密度、高刚度、高强度和高韧性等特点集于一身.生物材料经过数亿年的进化,形成了与环境和功能需求相适应的精细复杂结构,如贝壳珍珠层的砖-泥结构和螃蟹角质层的螺旋结构,它们均表现出非凡的机械性能和独特的功能特性,这启发了人们对于高性...

关 键 词:多孔陶瓷  仿生材料  冷冻铸造  磁场作用  微观结构  力学性能
收稿时间:2021-02-09

Research Progress on Preparation of Biomimetic Materials by Freeze Casting under Magnetic Field
ALATENG Shaga,CHEN Guanhong,CHEN Xing. Research Progress on Preparation of Biomimetic Materials by Freeze Casting under Magnetic Field[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(7): 2348-2359
Authors:ALATENG Shaga  CHEN Guanhong  CHEN Xing
Affiliation:College of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130117, China
Abstract:With the rapid development of science and technology, higher requirements are put forward for the performance of materials. It is urgent to develop new lightweight and high-performance structural materials, which have the characteristics of low density, high stiffness, high strength, and high toughness. After hundreds of millions years of evolution, biomaterials have formed fine and complex structures that are compatible with the environment and functional requirements, such as the “brick-mortar” structure of nacre and the helical structure of crab cuticle. They all exhibit extraordinary mechanical properties and unique functional characteristics, which greatly inspired the design and construction of high-performance materials. The currently developed freeze casting method (ice template method) is an effective method for preparing biomimetic materials. Usually, the water-based ceramics slurry is directionally solidified under the effect of temperature gradient. After freeze-drying, the porous ceramics with fine structure can be obtained. Then, the porous ceramics can be filled with soft phase resin to obtain the ceramics-resin composite with nacre-like structure. In order to further control the microstructure of the material, the researchers applied magnetic field to the freeze casting process, and finally found that the structure and properties of the material have changed significantly. In this paper, the progress in the control of material microstructure and the preparation of biomimetic materials by freeze casting are introduced, and the influence of magnetic field on freeze casting is summarized. The change of microstructure and mechanicalproperties of ice-templating materials assisted by magnetic field is summarized.
Keywords:porous ceramics  biomimetic material  freeze casting  magnetic field  microstructure  mechanical property  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《硅酸盐通报》浏览原始摘要信息
点击此处可从《硅酸盐通报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号