首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture
Authors:Jipeng Dong  Fei Wang  Guanghui Chen  Shougui Wang  Cailin Ji  Fei Gao
Affiliation:1.Shandong Key Laboratory of Multiphase Fluid Reaction and Separation Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;2.Department of Chemical Engineering, Qingdao University of Science and Technology, Gaomi 261500, China
Abstract:Adsorption process is considered to be the most promising alternative for the CO2 capture to the traditional energy-intensive amine absorption process, and the development of feasible and efficient CO2 adsorbents is still a challenge. In this work, the NiO@USY (ultrastable Y) composites with different NiO loadings were prepared for the CO2 adsorption using Ni(NO3)2 as the precursor. The composites were characterized by X-ray photoelectron spectroscopy, X-ray diffraction, nitrogen adsorption–desorption test, scanning electron microscopy analysis, and thermogravimetric analysis, and were evaluated for the CO2 adsorption capacity, CO2/N2 adsorption selectivity and CO2 cycle adsorption capacity. The characterization results show that after the activation at 423 K, the Ni(NO3)2 species were well dispersed into the surface of zeolite USY, and after the further activation at 823 K, Ni(NO3)2 could be converted into highly dispersed NiO. The adsorption results show that the presence of the active component NiO plays an important role in improving the CO2 adsorption performance, and the NiO@USY composite with a NiO loading of 1.5 mmol·g-1 USY support displays a high adsorption capacity and adsorption selectivity for CO2, and shows a good cycle stability. In addition, the Clausius–Clapeyron equation was used to evaluate the isosteric heat of adsorption of CO2 on the NiO(1.5)@USY composite, and the heat of adsorption was 17.39–38.34 kJ·mol-1.
Keywords:NiO@USY composites                                              Carbon dioxide                                              Adsorption                                              Separation                                              Adsorption selectivity
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号