首页 | 本学科首页   官方微博 | 高级检索  
     


Experiment and simulation of foaming injection molding of polypropylene/nano-calcium carbonate composites by supercritical carbon dioxide
Authors:Zhenhao Xi  Jie Chen  Tao Liu  Ling Zhao  Lih-Sheng Turng
Affiliation:1.State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;2.Department of Mechanical Engineering, University of Wisconsin-Madison, WI 53706, USA
Abstract:Microcellular injection molding of neat isotactic polypropylene (iPP) and isotactic polypropylene/nano-calcium carbonate composites (iPP/nano-CaCO3H) was performed using supercritical carbon dioxide as the physical blowing agent. The influences of filler content and operating conditions on microstructure morphology of iPP and iPP/nano-CaCO3H microcellular samples were studied systematically. The results showed the bubble size of the microcellular samples could be effectively decreased while the cell density increased for iPP/nano-CaCO3H composites, especially at high CO2 concentration and back pressure, low mold temperature and injection speed, and high filler content. Then Moldex 3D was applied to simulate the microcellular injection molding process, with the application of the measured ScCO2 solubility and diffusion data for iPP and iPP/nano-CaCO3H composites respectively. For neat iPP, the simulated bubble size and density distribution in the center section of tensile bars showed a good agreement with the experimental values. However, for iPP/nano-CaCO3H composites, the correction factor for nucleation activation energy F and the pre-exponential factor of nucleation rate f0 were obtained by nonlinear regression on the experimental bubble size and density distribution. The parameters F and f0 can be used to predict the microcellular injection molding process for iPP/nano-CaCO3H composites by Moldex 3D.
Keywords:Microcellular injection molding  Isotactic polypropylene/nano-calcium carbonate  Cell morphology  Nucleation activation energy  Numerical simulation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号