首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of Janus-type superparamagnetic iron oxide nanoparticles modified with functionalized PCL/PHEMA via photopolymerization for dual drug delivery
Authors:Sepideh Khoee  Monireh Jalaeian Bashirzadeh
Affiliation:Polymer Laboratory, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
Abstract:In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized by the coprecipitation of FeCl2˙4H2O and FeCl3˙6H2O and applied as a core for preparation of Janus nanoparticles. Accordingly, freshly modified methacrylated iron oxide nanoparticles were reacted with two functionalized polymers. Acrylated poly(ε-caprolactone) (PCL) and acrylated poly(2-hydroxyethyl methacrylate) (PHEMA) were synthesized via ring-opening and free-radical polymerization, respectively, and subsequent modification with acryloyl chloride. Acrylated PCL as the hydrophobic part and acrylated PHEMA as the hydrophilic domain were grafted on the surface of methacrylated iron oxide nanoparticles with two morphologies. Pickering emulsion and solution photopolymerization reactions were used to prepare nanoparticles with “Janus” and “mixed” morphologies, respectively. The products were characterized in each step using Fourier-transform infrared spectroscopy (FT-IR), Proton nuclear magnetic resonance (1H-NMR), thermogravimetric analysis (TGA), dynamic light scaterring (DLS), transmission electron microscope (TEM), vibrating-sample magnetometer (VSM), energy dispersive X-ray (EDX), and ultraviolet–visible spectroscopy (UV-Vis). Quercetin and 5-FU (as two anticancer drugs) were loaded in the mentioned nanoparticles, and the drug loading capacity and encapsulation efficiency (EE) of these nanoparticles were calculated. in vitro release behavior at two pH values (5.8 and 7.4) and at 37°C demonstrated that morphology can affect the release profile. Finally, rat C6 cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay for drug-free and drug-loaded nanoparticles.
Keywords:drug delivery systems  Janus nanoparticles  nanostructured polymers  photochemistry  surfaces and interfaces
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号