首页 | 本学科首页   官方微博 | 高级检索  
     


Development of sodium hybrid quasi-solid electrolytes based on porous NASICON and ionic liquids
Affiliation:1. Materials Science and Engineering Department, University Carlos III of Madrid, Spain;2. Institut Européen des Membranes (IEM), UMR-5635, Université de Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France;3. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, LEPMI, 38 000, Grenoble, France
Abstract:Lithium-ion batteries are currently the alternative of choice to overcome the increasing demand of energy. However, besides the scarcity of lithium and limited geolocation, it is believed that such batteries have already reached their maximum maturity. Sodium batteries emerge as an alternative to produce the new, so called, post-lithium batteries. In this study, we explore (i) the effect of sodium content and sintering temperature in solid electrolytes based in NASICON-type compounds and (ii) the use of two methodologies to obtain porous NASICON samples: application of natural substances and organic materials as pore-formers and freeze casting. The main purpose is the attainment of hybrid quasi-solid state electrolytes, with enhanced room temperature conductivity, based on porous ceramic electrolyte layers infiltrated with ionic liquids. Using this approach, porous samples with different microstructure and porous morphology and distribution were achieved, providing an enhancement in conductivity (ranging from 0.45 to 0.96 mS cm?1 at 30 °C) of one order of magnitude for infiltrated samples respect to pore-free samples. According to these results the porous NASICON might be considered as a functional macroporous inorganic separator that can act as a Na+ reservoir.
Keywords:Hybrid electrolyte  Sodium battery  NASICON  Ionic liquids
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号