首页 | 本学科首页   官方微博 | 高级检索  
     


3D printing of porous low-temperature in-situ mullite ceramic using waste rice husk ash-derived silica
Affiliation:1. Faculty of Dentistry, Mahidol University, Bangkok 10400, Thailand;2. Dental Biomaterials University of Florida, Gainesville, FL 32611, United States;3. Materials Science and Engineering Department, University of Florida, Gainesville, FL 32611, United States;1. Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Seongsangu, Changwon, Gyeongnam 51508, South Korea;2. School of Materials Science and Engineering, Pusan National University, Busan 46241, South Korea;1. Department of 3D Printing Materials, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea;2. Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea;1. Center for Research in Structural Integrity, Reliability and Micromechanics of Materials, Department of Materials Science and Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est (EEBE), 08019 Barcelona, Spain;2. Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est (EEBE), 08019 Barcelona, Spain;3. Synthetic Polymers: Structure and Properties. Biodegradable Polymers, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est (EEBE), 08019 Barcelona, Spain;4. Centre CIM – Universitat Politècnica de Catalunya (CIM-UPC), 08028 Barcelona, Spain;5. TECNOFAB Research Group, Department of Mechanical Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain;6. Laboratoire de Synthèse et Fonctionnalisation des Céramiques, Saint-Gobain – Research Provence, 84360 Cavaillon, France;1. Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;2. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract:The in-situ mullite (3Al2O3·2SiO2) foams are fabricated by 3D printing (direct ink writing (DIW)) technique and utilize waste rice husk ash (RHA). The Al2O3-SiO2 inks are prepared using an aqueous binder with α-alumina and two different silica sources, i.e., RHA extracted biogenic nano-silica (NS) and commercial silica (CS). The ink rheological features are first designed in terms of solid-to-liquid ratio and dispersant, and found that a higher amount of dispersant is needed for functionalization of NS-containing ink than CS (micro-sized) consisting of ink. Secondly, the DIW log-pile structures are fired at different temperatures (1200?1500 °C), and NS containing samples exhibited remarkable enhanced properties at a lower firing temperature than CS. At 1400 °C, alumina and RHA nano-silica entirely transformed into mullite and retained ~75 % porosity, ~8 MPa cold compressive strength, and thermal conductivity ~0.173 W/m·k that designate a simple and effective way to fabricate of mullite foamy structure.
Keywords:Mullite foam  Rice husk ash  Direct ink writing  3D printing  Rheology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号