首页 | 本学科首页   官方微博 | 高级检索  
     

基于HOG特征和滑动窗口的乳腺病理图像细胞检测
作者姓名:项磊  徐军
作者单位:南京信息工程大学信息与控制学院, 江苏 南京 210044
基金项目:国家自然科学基金资助项目(61273259);江苏省“六大人才高峰”高层次人才资助项目
摘    要:提出一种基于方向梯度直方图(histograms of oriented gradient, HOG) 特征和滑动窗口的细胞检测方法,能快速、高效、准确地检测高分辨率病理组织图像中的细胞。该检测算法首先对训练集中的细胞样本块和非细胞样本块提取HOG特征,然后运用HOG特征训练分类器。训练好的分类器用于在整幅病理图像中自动检测细胞。先运用滑动窗的方法在整幅高分辨率病理图像中选取相同尺寸的所有可能的细胞块,被滑动窗选定的图像块提取HOG特征后,送到训练好的分类器中判断是否是细胞块。为了验证提出方法的有效性,将此方法运用于17名乳腺患者的共37张H&E(hematoxylin & eosin)染色高分辨率穿刺切片病理图像上自动检测细胞, 通过与softmax(SM)分类器、稀疏自编码器+SM、局部二值模式+SM、支持向量机(support vector machine, SVM)、HOG+SVM、以及 HOG+SVM 多个模型对细胞检测的准确率、召回率以及综合评价指标的对比表明,本研究提出的方法分别为71.5%,82.3%和76.5%,具有更高的准确率。

关 键 词:滑动窗口  非最大值抑制  细胞检测  方向梯度直方图特征  组织病理图像  
收稿时间:2014-05-23
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号