首页 | 本学科首页   官方微博 | 高级检索  
     

抗滑桩加固边坡稳定性3维极限上限拓展分析
引用本文:饶平平,赵琳学,刘颖,李林.抗滑桩加固边坡稳定性3维极限上限拓展分析[J].四川大学学报(工程科学版),2018,50(6):184-192.
作者姓名:饶平平  赵琳学  刘颖  李林
作者单位:上海理工大学 土木工程系, 上海 200093,昆士兰大学 土木工程系, 布里斯班 4072,南昌工程学院 江西省水利土木特种加固与安全监控工程研究中心, 江西 南昌 330099,同济大学 地下建筑与工程系, 上海 200092
基金项目:国家自然科学基金青年基金资助项目(51208301);江西省科技厅青年科学基金资助项目(20161BAB216107)
摘    要:抗滑桩作为常用的边坡加固手段,被广泛应用于工程实践中,其影响下的边坡稳定性分析,具有较高的理论和实践价值。采用极限分析上限法,通过引进参数拓展了边坡3维计算模型,建立了内外功率平衡的边坡安全系数计算框架,并通过优化计算得到一定参数条件下边坡的安全系数上限解和最危险破坏机构形状。在此基础上,分析了抗滑桩加固后边坡破坏模式和稳定性受抗滑桩位置、桩距、坡角、机构限宽等参数的影响规律,并讨论了不同参数条件下破坏面形状的变化规律和边坡稳定性变化的内在机理。结果表明:最安全抗滑桩位置不受机构限宽影响,位于坡面中点与坡顶间的某一位置;当机构限宽较小且抗滑桩位置靠近坡趾时,边坡破坏面通过坡面。抗滑桩位置距离坡趾越远,破坏面越靠近坡面且曲率越大。当桩距较小时,边坡倾向于在抗滑桩位置上方发生次级滑动;边坡整体安全系数随桩距的增大而降低。随着机构限宽的增大,边坡安全系数逐渐降低,并逐渐接近2维破坏机构的安全系数。边坡破坏机构随桩距和机构限宽的增大而增厚。当坡角较小时,边坡破坏面通过坡趾下方。本文方法不仅对边坡破坏机构类型的拓展具有理论意义,而且实现了计算结果的进一步优化。

关 键 词:抗滑桩  极限分析上限法  3维破坏机构  稳定安全系数
收稿时间:2017/11/15 0:00:00
修稿时间:2018/4/23 0:00:00

Extended 3D Stability Analysis of a Slope Reinforced with Piles Using Upper-bound Limit Analysis Method
RAO Pingping,ZHAO Linxue,LIU Ying and LI Lin.Extended 3D Stability Analysis of a Slope Reinforced with Piles Using Upper-bound Limit Analysis Method[J].Journal of Sichuan University (Engineering Science Edition),2018,50(6):184-192.
Authors:RAO Pingping  ZHAO Linxue  LIU Ying and LI Lin
Affiliation:Dept. of Civil Eng., Univ. of Shanghai for Sci. and Technol., Shanghai 200093, China,School of Civil Eng., The Univ. of Queensland, Brisbane 4072, Australia,Jiangxi Provincial Eng. Research Center of the Special Reinforcement and Safety Monitoring Technol. in Hydraulic & Civil Eng., Nanchang Inst. of Technol., Nanchang 330099, China and Dept. of Geotechnical Eng., Tongji Univ., Shanghai 200092, China
Abstract:The technique of anti-slide pile is widely applied in practical engineering as a common measure of slope reinforcement. The slope stability analysis considering its effects is of high theoretical and practical significance. Based on the upper-bound limit analysis method, 3D rotational failure mechanisms are extended by introducing new geometric parameters. The calculation framework of safety factor is established considering the equation of internal dissipation and external work rate. The minimum upper-bound solution of safety factor and the most dangerous failure mechanism are calculated through optimization procedure. Parametric studies were carried out to investigate the effects of pile location, pile spacing, slope angle, slope width on the geometry of failure mechanism and the stability of a slope reinforced with piles. The geometry of failure mechanisms is also discussed. The results demonstrate that the most effective location of the anti-slide piles is between the middle and top of the slope, which is not influenced by the slope width. With a relatively smaller slope width and a pile location close to the slope toe, the critical failure surface passes through the slope face. The farther the pile location is away from the slope toe, the closer the failure surface is to the slope face and the greater its curvature. For slopes with small pile spacing, a secondary slope failure tends to occur above the pile location. Furthermore, the safety factor of slope decreases with the increase of pile spacing. The greater the slope width is, the lower the safety factor is and the closer it is to that of a 2D slope. The failure partbecomes thicker as the pile space and the slope width turns larger. While the slope angle is small, the critical failure surface passes below the slope toe and through the slope base. Obviously the extension of failure mechanism leads to additional optimization of the results.
Keywords:anti-slide piles  upper-bound limit analysis method  3D failure mechanism  anti-slide safety factor
点击此处可从《四川大学学报(工程科学版)》浏览原始摘要信息
点击此处可从《四川大学学报(工程科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号