首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于人工神经网络及小波分析的心音诊断方法
引用本文:曹莉,赵德安,孙月平,刘建跃.基于人工神经网络及小波分析的心音诊断方法[J].微计算机信息,2007,23(19):311-312,302.
作者姓名:曹莉  赵德安  孙月平  刘建跃
作者单位:1. 212013,江苏镇江,江苏大学电气信息工程学院
2. 212013,江苏镇江,江苏大学职工医院
基金项目:本课题得到江苏省十五"农业攻关项目"(BE2001380)经费资助.
摘    要:由于传统的心音听诊就是凭医生的经验用听觉分析心音信号,不能满足医学上所要求的高精确度性能而且听诊技能要花多年时间才能掌握,针对这些弊端本文提出了一种新的心音诊断方法.它对电子听诊器录制的心音数据,经过去噪预处理后用小波变换进行分析并提取特征值,再将选取的特征值输入到前馈型神经网络进行训练和识别.实验中我们用节点数分别为9,5,5的BP神经网络能成功识别出主动脉关闭不全,主动脉狭窄,二尖瓣关闭不全,二尖瓣狭窄,和正常心音五类心音,能为相应心脏疾病的诊断提供有力的依据,为临床应用提供有效的分析手段.

关 键 词:心音  小波变换  特征值选取  神经网络
文章编号:1008-0570(2007)07-1-0311-02
修稿时间:2007-05-132007-06-15

The method of heart sound diagnosis based on neural networks and wavelet transform
CAO LI,ZHAO DEAN,SUN YUEPING,LIU JIANYUE.The method of heart sound diagnosis based on neural networks and wavelet transform[J].Control & Automation,2007,23(19):311-312,302.
Authors:CAO LI  ZHAO DEAN  SUN YUEPING  LIU JIANYUE
Abstract:Heart auscultation with the bare ear and the stethoscope can not satisfy the high precision in medicine and forming a diag- nosis based on heart sounds is a skill that can take years to acquire. So this paper presents a diagnosis method on heart ausculta- tion. A library of heart sound files, recorded via an electronic stethoscope are used, features from these samples are extracted using discrete wavelet transform and the classification is trained and carried out by using a feed forward neural network. We collected sound samples of five categories, they are aortic regurgitation, aortic stenosis, mitral regurgitation, mitral stenosis and normal heard sound.The BP can regonise them succesfully. It can make up the shortage of heart auscultation and save the time to grasp the diag- nosis skill for doctors.
Keywords:heard sound  wavelet transform  eigenvalue  neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号