首页 | 本学科首页   官方微博 | 高级检索  
     

一种模糊加权的孪生支持向量机算法
引用本文:李凯,李娜,卢霄霞. 一种模糊加权的孪生支持向量机算法[J]. 计算机工程与应用, 2013, 49(4): 162-165
作者姓名:李凯  李娜  卢霄霞
作者单位:河北大学 数学与计算机学院,河北 保定 071002
基金项目:国家自然科学基金(No.61073121);河北省自然科学基金(No.F2012201014)
摘    要:虽然孪生支持向量机(Twin Support Vector Machine,TSVM)的处理速度优于传统的支持向量机,但其并没有考虑输入样本点对最优分类超平面所产生的不同影响。通过为每个训练样本赋予不同的样本重要性,以及减少样本点对非平行超平面的影响,提出了模糊加权孪生支持向量机(Fuzzy TSVM,FTSVM)。在UCI标准数据集上,对FTSVM进行了实验研究并与TSVM、FSVM和SVM方法进行了比较,实验结果表明FTSVM方法是有效的。

关 键 词:孪生支持向量机  模糊加权  分类  

Twin Support Vector Machine algorithm with fuzzy weighting
LI Kai, LI Na, LU Xiaoxia. Twin Support Vector Machine algorithm with fuzzy weighting[J]. Computer Engineering and Applications, 2013, 49(4): 162-165
Authors:LI Kai   LI Na   LU Xiaoxia
Affiliation:College of Mathematics and Computer, Hebei University, Baoding, Hebei 071002, China
Abstract:Although Twin Support Vector Machine(TSVM)has faster speed than traditional support vector machine for classification problem, it does not take the importance of the training samples on the learning of the decision hyperplane into account with respect to the classification task. In this paper, Fuzzy Twin Support Vector Machine(FTSVM)is proposed by applying a fuzzy membership to each training sample to reduce the effects of the samples on the hyperplane. Experiments on several UCI benchmark datasets show that the fuzzy twin support vector machine is effective and feasible relative to twin support vector machine, fuzzy support vector machine and support vector machine.
Keywords:Twin Support Vector Machine  fuzzy weighting  classification
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号