首页 | 本学科首页   官方微博 | 高级检索  
     


Preference-oriented real-time scheduling and its application in fault-tolerant systems
Affiliation:1. University of Málaga, Spain;2. University of Grenoble Alpes, France
Abstract:In this paper, we consider a set of real-time periodic tasks where some tasks are preferably executed as soon as possible (ASAP) and others as late as possible (ALAP) while still meeting their deadlines. After introducing the idea of preference-oriented (PO) execution, we formally define the concept of PO-optimality. For fully-loaded systems (with 100% utilization), we first propose a PO-optimal scheduler, namely ASAP-Ensured Earliest Deadline (SEED), by focusing on ASAP tasks where the optimality of ALAP tasks’ preference is achieved implicitly due to the harmonicity of the PO-optimal schedules for such systems. Then, for under-utilized systems (with less than 100% utilization), we show the discrepancies between different PO-optimal schedules. By extending SEED, we propose a generalized Preference-Oriented Earliest Deadline (POED) scheduler that can obtain a PO-optimal schedule for any schedulable task set. The application of the POED scheduler in a dual-processor fault-tolerant system is further illustrated. We evaluate the proposed PO-optimal schedulers through extensive simulations. The results show that, comparing to that of the well-known EDF scheduler, the scheduling overheads of SEED and POED are higher (but still manageable) due to the additional consideration of tasks’ preferences. However, SEED and POED can achieve the preference-oriented execution objectives in a more successful way than EDF.
Keywords:Periodic real-time tasks  Preference-oriented execution  Scheduling algorithms  Fault-tolerant systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号