首页 | 本学科首页   官方微博 | 高级检索  
     


Massively parallel GPU computing for fast stereo correspondence algorithms
Affiliation:1. Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt;2. Physics Department, Faculty of Science, A1-Azhar University, Assiut 71542, Egypt;3. High Institute for Engineering and Technology, El-Minya 61768, Egypt
Abstract:Current accurate stereo matching algorithms employ some key techniques that are not suitable for parallel GPU architecture. It will be tricky and cumbersome to directly take these techniques into GPU applications. Trying to tackle this difficulty, we design two GPU-based stereo matching algorithms, one using a local fixed aggregation window whose size is configurable, and the other using an adaptive aggregation window which only includes necessary pixels. We use the winner-takes-all (WTA) principle for optimization and a plain voting refinement for post-processing; both do not need complex data structures. We aim to implement on GPU platforms fast stereo matching algorithms that produce results with same-level quality as other WTA local dense methods that use window-based cost aggregation. In our GPU-based implementation of the fixed window partially demosaiced CFA stereo matching application, accelerations up to 20 times are obtained for large size images. In our GPU-based implementation of the adaptive window color stereo matching application, experiment results show that it can handle four pairs of standard images from Middlebury database within roughly 100 ms.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号