首页 | 本学科首页   官方微博 | 高级检索  
     


gMLC: a multi-label feature selection framework for graph classification
Authors:Xiangnan Kong  Philip S Yu
Affiliation:(1) AIST Computational Biology Research Center Tokyo, Tokyo, Japan
Abstract:Graph classification has been showing critical importance in a wide variety of applications, e.g. drug activity predictions and toxicology analysis. Current research on graph classification focuses on single-label settings. However, in many applications, each graph data can be assigned with a set of multiple labels simultaneously. Extracting good features using multiple labels of the graphs becomes an important step before graph classification. In this paper, we study the problem of multi-label feature selection for graph classification and propose a novel solution, called gMLC, to efficiently search for optimal subgraph features for graph objects with multiple labels. Different from existing feature selection methods in vector spaces that assume the feature set is given, we perform multi-label feature selection for graph data in a progressive way together with the subgraph feature mining process. We derive an evaluation criterion to estimate the dependence between subgraph features and multiple labels of graphs. Then, a branch-and-bound algorithm is proposed to efficiently search for optimal subgraph features by judiciously pruning the subgraph search space using multiple labels. Empirical studies demonstrate that our feature selection approach can effectively boost multi-label graph classification performances and is more efficient by pruning the subgraph search space using multiple labels.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号