首页 | 本学科首页   官方微博 | 高级检索  
     


Integrating the lot-sizing and sequencing decisions for scheduling a capacitated flow line
Authors:Riyaz Sikora  Dilip Chhajed  Michael J Shaw
Affiliation:

a Industrial and Manufacturing Systems Engineering, University of Michigan-Dearborn, MI 48128, U.S.A.

b Department of Business Administration, University of Illinois, Champaign, IL 61820, U.S.A.

Abstract:In this paper we consider a general problem of scheduling a single flow line consisting of multiple machines and producing a given set of jobs. The manufacturing environment is characterized by sequence dependent set-up times, limited intermediate buffer space, and capacity constraints. In addition, jobs are assigned with due dates that have to be met. The objectives of the scheduling are: (1) to meet the due dates without violating the capacity constraints, (2) to minimize the makespan, and (3) to minimize the inventory holding costs. While most of the approaches in the literature treat the problem of scheduling in flow lines as two independent sub-problems of lot-sizing and sequencing, our approach integrates the lot-sizing and sequencing heuristics. The integrated approach uses the Silver-Meal heuristic (modified to include lot-splitting) for lot-sizing and an improvement procedure applied to Palmer's heuristic for sequencing, which takes into account the actual sequence dependent set-up times and the limited intermedite buffer capacity. We evaluate the performance of the integrated approach and demonstrate its efficacy for scheduling a real world SMT manufacturing environment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号