首页 | 本学科首页   官方微博 | 高级检索  
     


Contact Friction Compensation for Robots Using Genetic Learning Algorithms
Authors:Der-Cherng Liaw  Jeng-Tze Huang
Affiliation:(1) Department of Electrical and Control Engineering, National Chiao Tung University, Hsinchu, 30039, Taiwan, R.O.C.
Abstract:In this paper, the issues of contact friction compensation for constrained robots are presented. The proposed design consists of two loops. The inner loop is for the inverse dynamics control which linearizes the system by canceling nonlinear dynamics, while the outer loop is for friction compensation. Although various models of friction have been proposed in many engineering applications, frictional force can be modeled by the Coulomb friction plus the viscous force. Based on such a model, an on-line genetic algorithm is proposed to learn the friction coefficients for friction model. The friction compensation control input is also implemented in terms of the friction coefficients to cancel the effect of unknown friction. By the guidance of the fitness function, the genetic learning algorithm searches for the best-fit value in a way like the natural surviving laws. Simulation results demonstrate that the proposed on-line genetic algorithm can achieve good friction compensation even under the conditions of measurement noise and system uncertainty. Moreover, the proposed control scheme is also found to be feasible for friction compensation of friction model with Stribeck effect and position-dependent friction model.
Keywords:constrained robots  genetic algorithms  learning  friction compensation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号