首页 | 本学科首页   官方微博 | 高级检索  
     


Robot Control Optimization Using Reinforcement Learning
Authors:Kai-Tai Song  Wen-Yu Sun
Affiliation:(1) Department of Control Engineering, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan, R.O.C.
Abstract:Conventional robot control schemes are basically model-based methods. However, exact modeling of robot dynamics poses considerable problems and faces various uncertainties in task execution. This paper proposes a reinforcement learning control approach for overcoming such drawbacks. An artificial neural network (ANN) serves as the learning structure, and an applied stochastic real-valued (SRV) unit as the learning method. Initially, force tracking control of a two-link robot arm is simulated to verify the control design. The simulation results confirm that even without information related to the robot dynamic model and environment states, operation rules for simultaneous controlling force and velocity are achievable by repetitive exploration. Hitherto, however, an acceptable performance has demanded many learning iterations and the learning speed proved too slow for practical applications. The approach herein, therefore, improves the tracking performance by combining a conventional controller with a reinforcement learning strategy. Experimental results demonstrate improved trajectory tracking performance of a two-link direct-drive robot manipulator using the proposed method.
Keywords:artificial neural network  dynamic control  reinforcement learning  robot control
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号