首页 | 本学科首页   官方微博 | 高级检索  
     


A Novel Genetic Algorithm and its Application in Fuzzy Variable Structure Control of Fuel Cell
Authors:Xing-Jin Sun  Guang-Yi Cao  Xin-Jian Zhu
Affiliation:(1) Fuel Cell Institute, Department of Automation, Shanghai Jiaotong University, Shanghai, 200030, P.R.China
Abstract:A novel genetic algorithm (GA) is proposed; a ranking genetic algorithm with improved crossover operator. The whole colony is divided into several sub-colonies, and each sub-colony is called a family, which is represented by its best individual. This algorithm includes two levels of structure: the family level and the harmonizing level. The families are parallel during the process of evolution. The harmonizing level ranks all families based on their fitness values, and transports the best individual of the first-rank family to low-grade families so as to accelerate their evolution. Two levels of competition are constructed; one among individuals of a family, and the other among families. The competition within a family is accomplished by a genetic algorithm with improved crossover operator. A family's mutation probability is determined by its relative competitive power. In this way, a rapid and global convergence to the optimum goal is obtained. The GA crossover operator is improved for the case of floating point operations. The improved crossover operator can generate child individuals at random within the space of the supercube, which enhances the space searching rate and precision. Finally, the proposed novel GA is applied to the fuzzy-variable structure control (FVSC) system of a molten carbonate fuel cell (MCFC). The simulation results are satisfying.
Keywords:ranking genetic algorithm  improved crossover operator  molten carbonate fuel cell (MCFC)
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号