首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of the musculoskeletal system of the hand and forearm during a cylinder grasping task
Authors:Nicolas Vignais  Frédéric Marin
Affiliation:UMR CNRS 7338 Biomechanics and Bioengineering, University of Technology of Compiègne, Research Center, Dct Schweitzer Street, 60200 Compiègne, France
Abstract:Musculoskeletal disorders of the hand are mostly due to repeated or awkward manual tasks in the work environment and are considered a public health issue. To prevent their development, it is necessary to understand and investigate the biomechanical behavior of the musculoskeletal system during the movement. In this study a biomechanical analysis of the upper extremity during a cylinder grasping task is conducted by using a parameterized musculoskeletal model of the hand and forearm. The proposed model is composed of 21 segments, 28 musculotendon units, and 20 joints providing 24 degrees of freedom. Boundary conditions of the model are defined by the three-dimensional coordinates of 43 external markers fixed to bony landmarks of the hand and forearm and tracked with an optoelectronic motion capture system. External marker positions from five healthy participants were used to test the model. A task consisting of closing and opening fingers around a cylinder 25 mm in diameter was investigated. Based on experimental kinematic data, an inverse dynamics process was performed to calculate output data of the model (joint angles, musculotendon unit shortening and lengthening patterns). Finally, based on an optimization procedure, joint loads and musculotendon forces were computed in a forward dynamics simulation. Results of this study assessed reproducibility and consistency of the biomechanical behavior of the musculoskeletal hand system.
Keywords:Hand  Biomechanics  Cylinder grasping  Musculoskeletal modeling  Motion capture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号