首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence
Authors:Alexander Damm  André Erler  Michele Meroni  Wout Verhoef
Affiliation:
  • a Remote Sensing Laboratories, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
  • b Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Stetternicher Forst, 52425 Jülich, Germany
  • c Aachen University of Applied Sciences, Campus Juelich, Medical Informatics, Heinrich-Mussmann Str. 1, 52428 Jülich, Germany
  • d European Commission, DG-JRC, Institute for Environment and Sustainability, Monitoring Agricultural Resources Unit, Via Fermi 2749, 21027 Ispra, Italy
  • e University of Twente, Faculty of Geo-Information Science and Earth Observation (ITC), P.O. Box 6, 7500 AA Enschede, The Netherlands
  • Abstract:Chlorophyll fluorescence is related to photosynthesis and can serve as a remote sensing proxy for estimating photosynthetic energy conversion and carbon uptake. Recent advances in sensor technology allow remote measurements of the sun-induced chlorophyll fluorescence signal (Fs) at leaf and canopy scale. The commonly used Fraunhofer Line Depth (FLD) principle exploits spectrally narrow atmospheric oxygen absorption bands and relates Fs to the difference of the absorption feature depth of a fluorescensing and a non-fluorescensing surface. However, due to the nature of these narrow bands, Fs retrieval results depend not only on vegetation species type or environmental conditions, but also on instrument technology and processing algorithms. Thus, an evaluation of all influencing factors and their separate quantification is required to further improve Fs retrieval and to allow a reproducible interpretation of Fs signals.Here we present a modeling study that isolates and quantifies the impacts of sensor characteristics, such as spectral sampling interval (SSI), spectral resolution (SR), signal to noise ratio (SNR), and spectral shift (SS) on the accuracy of Fs measurements in the oxygen A band centered at 760 nm (O2-A). Modeled high resolution radiance spectra associated with known Fs were spectrally resampled, taking into consideration the various sensor properties. Fs was retrieved using the three most common FLD retrieval methods, namely the original FLD method (sFLD), the modified FLD (3FLD) and the improved FLD (iFLD). The analysis investigates parameter ranges, which are representative for field and airborne instruments currently used in Fs research (e.g., ASD FieldSpec, OceanOptics HR, AirFLEX, AISA, APEX, CASI, and MERIS).Our results show that the most important parameter affecting the retrieval accuracy is SNR, SR accounts for ≤ 40% of the error, the SSI for ≤ 12%, and SS for ≤ 7% of the error. A trade-off study revealed that high SR can partly compensate for low SNR. There is a strong interrelation between all parameters and the impact of specific parameters can compensate or amplify the influence of others. Hence, the combination of all parameters must be considered by the evaluation of sensors and their potential for Fs retrieval. In general, the standard FLD method strongly overestimates Fs, while 3FLD and iFLD provide a more accurate estimation of Fs. We conclude that technical sensor specifications and the retrieval methods cause a significant variability in retrieved Fs signals. Results are intended to be one relevant component of the total uncertainty budget of Fs retrieval and have to be considered in the interpretation of retrieved Fs signals.
    Keywords:Sun-induced chlorophyll fluorescence  Sensor characteristics  Retrieval methods  Fraunhofer Line Depth (FLD)  Directional effects  Spectral sampling interval  Spectral resolution  Signal to noise ratio  Spectral shift
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号