首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进小波分析的DDoS攻击检测方法
引用本文:吕良福,张加万,张丹.基于改进小波分析的DDoS攻击检测方法[J].计算机工程,2010,36(6):29-31.
作者姓名:吕良福  张加万  张丹
作者单位:1. 天津大学数学系,天津,300072
2. 天津大学计算机科学与技术学院,天津,300072
基金项目:国家自然科学基金资助项目(60673196);;天津市自然科学基金资助项目(07F2030)
摘    要:为准确及时检测DDoS攻击,在研究小波分析法检测DDoS攻击的基础上,提出一种基于主成分分析法和小波分析法的自适应DDoS检测方法,设计采用该方法检测DDoS攻击的模型及算法,分析其增大正常网络流量与异常网络流量之间Hurst参数差值的原因。实验结果表明,该方法减弱了检测结果对门限值的依赖性,提高检测率,防止漏报、误报情况的发生,且由于网络数据维数的降低,该方法大幅提高了检测速度。

关 键 词:分布式拒绝服务  网络自相似  小波分析  主成分分析
修稿时间: 

DDoS Attack Detection Method Based on Improved Wavelet Analysis
LV Liang-fu,ZHANG Jia-wan,ZHANG Dan.DDoS Attack Detection Method Based on Improved Wavelet Analysis[J].Computer Engineering,2010,36(6):29-31.
Authors:LV Liang-fu  ZHANG Jia-wan  ZHANG Dan
Affiliation:(1. Department of Mathematics, Tianjin University, Tianjin 300072;2. School of Computer Science and Technology, Tianjin University, Tianjin 300072)
Abstract:In order to detect Distributed Denial of Service(DDoS) attack accuratcly and timely,a new detection method based on Principle Component Analysis(PCA) and wavelet analysis is proposed.Software model and algorithm for detection of DDoS attack is presented.In addition,key reasons for the change of the Hurst’s value in the new method are analyzed.Experimental results show the method reduces the dependence for threshold,promotes the detection rate,avoids the situation of fail report and distort.It also improves the detection speed.
Keywords:Distributed Denial of Service(DDoS)  network self-similarity  wavelet analysis  Principle Component Analysis(PCA)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号