首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Mean-Shift跟踪算法中核函数窗宽的自动选取
引用本文:彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550.
作者姓名:彭宁嵩  杨杰  刘志  张风超
作者单位:1. 上海交通大学,图像处理与模式识别研究所,上海,200030;河南科技大学,电子与信息学院,河南,洛阳,471039
2. 上海交通大学,图像处理与模式识别研究所,上海,200030
基金项目:Supported bythe National Natural Science Foundation of China under Grant No.30170274(国家自然科学基金)
摘    要:传统核窗宽固定的Mean-Shift跟踪算法不能很好地对逐渐增大尺寸的目标进行有效的跟踪.在分析同一目标在不同尺度下核直方图基于Bhattacharyya系数相似性的基础上,发现并证明了在核窗宽固定的条件下,目标在其窗宽范围内进行缩放、平移运动并不影响Mean-Shift跟踪算法空间定位的准确性.在此基础上,提出了一种基于后向跟踪、形心配准的核窗宽自动选取算法.对尺度渐大的车辆进行的跟踪实验验证了该算法的有效性.

关 键 词:Mean-Shift  目标跟踪  核窗宽选取  Bhattacharyya系数  仿射模型
收稿时间:5/2/2004 12:00:00 AM
修稿时间:2004年5月2日

Automatic Selection of Kernel-Bandwidth for Mean-Shift Object Tracking
PENG Ning-Song,YANG Jie,LIU Zhi and ZHANG Feng-Chao.Automatic Selection of Kernel-Bandwidth for Mean-Shift Object Tracking[J].Journal of Software,2005,16(9):1542-1550.
Authors:PENG Ning-Song  YANG Jie  LIU Zhi and ZHANG Feng-Chao
Abstract:Classic Mean-Shift based tracking algorithm uses fixed kernel-bandwidth, which limits the performance when the object scale exceeds the size of the tracking window. Based on the analysis of similarity of object kernel-histogram in different scales, i.e. the Bhattacharyya coefficient, a theorem is found and proved i.e. the changes of object scale and position within the kernel will not impact localization accuracy of Mean-Shift based tracking algorithm. Using this theorem an automatic bandwidth selection method is proposed based on backward tracking and object centroid registration. The proposed method is applied to track vehicle changing in size with encouraging results.
Keywords:Mean-Shift  object tracking  kernel-bandwidth selection  Bhattacharyya coefficient  affine model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号