首页 | 本学科首页   官方微博 | 高级检索  
     检索      

面向工业物联网环境下后门隐私泄露感知方法
引用本文:沙乐天,肖甫,陈伟,孙晶,王汝传.面向工业物联网环境下后门隐私泄露感知方法[J].软件学报,2018,29(7):1863-1879.
作者姓名:沙乐天  肖甫  陈伟  孙晶  王汝传
作者单位:南京邮电大学 计算机学院, 江苏 南京 210023;江苏省无线传感网高技术重点实验室, 江苏 南京 210023,南京邮电大学 计算机学院, 江苏 南京 210023;江苏省无线传感网高技术重点实验室, 江苏 南京 210023,南京邮电大学 计算机学院, 江苏 南京 210023;江苏省无线传感网高技术重点实验室, 江苏 南京 210023,南京通信技术研究所, 江苏 南京 210007,江苏省无线传感网高技术重点实验室, 江苏 南京 210023
基金项目:国家自然科学基金(61373137,61572260,61702283);江苏省高校自然科学研究计划重大项目(14KJA520002);江苏省杰出青年基金项目(BK20170039)
摘    要:伴随工业物联网相关技术的高速发展,后门隐私信息的泄露正成为一个重大的挑战,严重威胁工业控制系统及物联网环境的安全性及稳定性.本文基于工业物联网环境下后门隐私的数据特征定义若干基本属性,根据静态及动态数据流安全威胁抽取上层语义,并基于多属性决策方法聚合生成静态与动态泄露度,最终结合灰色关联分析计算安全级与安全阈值,以此实现后门隐私信息在静态二进制结构及动态数据流向中的泄露场景感知.实验选择目标环境中27种后门隐私信息进行测试,依次计算并分析基本定义、上层语义及判决语义,通过安全级与安全阈值的比较成功感知多种后门泄露场景.实验还将本文工作与其他相关模型或系统进行对比,验证了所提方法的有效性.

关 键 词:工业物联网  后门隐私  多属性决策  泄露感知
收稿时间:2017/5/28 0:00:00
修稿时间:2017/7/13 0:00:00

Leakage Perception Method for Backdoor Privacy in Industry Internet of Things Environment
SHA Le-Tian,XIAO Fu,CHEN Wei,SUN Jing and WANG Ru-Chuan.Leakage Perception Method for Backdoor Privacy in Industry Internet of Things Environment[J].Journal of Software,2018,29(7):1863-1879.
Authors:SHA Le-Tian  XIAO Fu  CHEN Wei  SUN Jing and WANG Ru-Chuan
Institution:School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China,School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China,School of Computer, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China,Nanjing Telecommunication Technology Institute, Nanjing 210007, China and Jiangsu High Technology Research Key Laboratory for Wireless Sensor Networks, Nanjing 210023, China
Abstract:Leakage of Backdoor Privacy has become a major challenge with rapid development of the Industry Internet of Things (IIoT), which has seriously threatened security and stability of Industrial Control System and Internet of Things. In this paper, some basic attributes are defined based on data feature of backdoor privacy in IIoT, upper semantics are extracted based on security threat in static and dynamic data flow, and static and dynamic leakage degrees are generated based on multi-attribute decision-making, finally security level and threshold are computed with grey correlation analysis. Therefore, perception for leakage scenarios of Backdoor Privacy can be accomplished in static binary structure and dynamic data flow. 27 kinds of Backdoor Privacy are chosen for testing in target environment, basic definitions, upper semantics and judgment semantics are computed and analyzed, successful perception for leakage scenarios is performed via comparison between security level and threshold. In addition, effectiveness of our work is proved through comparison with other models and prototypes.
Keywords:IIoT  backdoor privacy  multi-attribute Decision-making  perception of leakage
点击此处可从《软件学报》浏览原始摘要信息
点击此处可从《软件学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号