首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于合并思想和竞争学习思想的聚类新算法
引用本文:段敏,张锡恩.基于合并思想和竞争学习思想的聚类新算法[J].计算机工程与设计,2006,27(9):1656-1659.
作者姓名:段敏  张锡恩
作者单位:军械工程学院,导弹工程系发射工程教研室,河北,石家庄,050003
摘    要:针对分类目的准确标识出有样本分布的空间区域位置,没有类分布先验知识,类数不能预先确定的情况,提出一种聚类新方法.该算法的初始类心为所有样本点,竞争获胜规则由最近邻改为阈值,竞争过程中同时进行类心合并.在样本数量较大时,提出网格中心法和网格采样法降低计算复杂度.实验结果证实该算法对初始设置和参数不敏感,且结束条件容易确定,在一定程度上聚类效果优于其它算法.

关 键 词:合并  竞争学习  样本空间  位置标识  网格中心法  网格采样法
文章编号:1000-7024(2006)09-1656-04
收稿时间:2005-03-01
修稿时间:2005-03-01

Novel clustering algorithm based on combination idea and competitive learning idea
DUAN Min,ZHANG Xi-en.Novel clustering algorithm based on combination idea and competitive learning idea[J].Computer Engineering and Design,2006,27(9):1656-1659.
Authors:DUAN Min  ZHANG Xi-en
Institution:StaffRoom of Launch Engineering, Department of Missile Engineering, 0rdnance Engineering College, Shijiazhuang 050003, China
Abstract:A new cluster method is presented,which is aimed at accurately identifying the location of the area with example points,without transcendental knowledge of class distribution and the number of class.In this method,initial centers ofclass are all the example points,and the competitive win rule is a threshold instead of the nearest neighborhood,and the combination of class centers is carried during the competing process.The method of grid center and method of grid sample are presented to lower the calculation complexity when the number of points is huge.The experimental result proves it's insensitive to initial conditions and parameters,and the end con-ditions are easy to be defined.It's also proves the performance of this algorithm is superior to others in a certain extent.
Keywords:combination  competitive learning  example points space  location identification  method of grid center  method of grid sample
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号