首页 | 本学科首页   官方微博 | 高级检索  
     


Space-Time Equations for Non-Unimodular Mappings
Abstract:

The class of systems of uniform recurrence equations (UREs) is closed under uni-modular transformations. As a result, every systolic array described by a unimodular mapping can be specified by a system of space-time UREs, in which the time and space coordinates are made explicit. As non-unimodular mappings are frequently used in systolic designs, this paper presents a method that derives space-time equations for systolic arrays described by non-unimodular mappings. The space-time equations for non-unimodular mappings are known elsewhere as sparse UREs (SUREs) because the domains of their variables are sparse and their data dependences are uniform. Our method is compositional in that space-time SUREs can be further transformed by unimodular and non-unimodular mappings, allowing a straightforward implementation in systems like ALPHA. Specifying a systolic design by space-time equations has two advantages. First, the space-time equations exhibit all useful properties about the design, allowing the design to be formally verified. Second, depending on the application area and performance requirement, the space-time equations can be realised as custom VLSI systems, FPGAs, or programs to be run on a parallel computer.
Keywords:Simulated annealing  Maximum planar subgraph  Graph planarization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号