首页 | 本学科首页   官方微博 | 高级检索  
     

融合重检测机制的卷积回归网络目标跟踪算法
引用本文:贾永超,何小卫,郑忠龙.融合重检测机制的卷积回归网络目标跟踪算法[J].计算机应用,2019,39(8):2247-2251.
作者姓名:贾永超  何小卫  郑忠龙
作者单位:浙江师范大学数学与计算机科学学院,浙江金华,321004;浙江师范大学数学与计算机科学学院,浙江金华,321004;浙江师范大学数学与计算机科学学院,浙江金华,321004
基金项目:国家自然科学基金资助项目(61572023,61672467)。
摘    要:针对基于人工特征的背景感知相关滤波(CACF)算法在形变、运动模糊、低分辨率情形跟踪效果较差以及跟踪器遇到严重遮挡等情形容易陷入局部最优而导致跟踪失败的问题,提出一种融合重检测机制的卷积回归网络(CRN)目标跟踪算法。在训练阶段,将相关滤波作为CRN层融入进深度神经网络,使网络成为一个整体进行端到端训练;在跟踪阶段,通过残差连接融合不同网络层及其响应值,同时引入重检测机制使算法从潜在的跟踪失败中恢复,当响应值低于给定阈值时激活检测器。在数据集OTB-2013上的实验表明,所提算法在50个视频序列上精确度达到88.1%,相比原始CACF算法提高9.7个百分点,在具有形变、运动模糊等属性的视频序列上相比原始算法表现更优秀。

关 键 词:目标跟踪  相关滤波  卷积回归网络  端到端  重检测
收稿时间:2019-01-02
修稿时间:2019-03-08

Object tracking algorithm combining re-detection mechanism and convolutional regression network
JIA Yongchao,HE Xiaowei,ZHENG Zhonglong.Object tracking algorithm combining re-detection mechanism and convolutional regression network[J].journal of Computer Applications,2019,39(8):2247-2251.
Authors:JIA Yongchao  HE Xiaowei  ZHENG Zhonglong
Affiliation:College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua Zhejiang 321004, China
Abstract:Concerning the problem that Context-Ware Correlation Filter (CACF) algorithm based on artificial features has poor tracking performance under the situations of deformation, motion blur and low resolution and when the tracker encounters conditions like severe occlusion, it is easy to fall into local optimum and cause tracking failure, a new object tracking algorithm combining re-detection mechanism and Convolutional Regression Network (CRN) was proposed. In the training phase, the correlation filter was integrated into the deep neural network as a CRN layer, so that the network became a whole for end-to-end training. In the tracking phase, different network layers and their response values were merged through residual connections. At the same time, a re-detection mechanism was introduced to make the tracking algorithm recover from the potential tracking failure, and the re-detector would be activated when the response value was lower than the given threshold. Experimental results on the dataset OTB-2013 show that the proposed algorithm achieves 88.1% accuracy on 50 video sequences, which is 9.7 percentage points higher than the accuracy of original CACF algorithm, and has better results compared with original algorithm on video sequences with attributes like deformation and motion blur.
Keywords:object tracking                                                                                                                        correlation filter                                                                                                                        Convolution Regression Network (CRN)                                                                                                                        end-to-end                                                                                                                        re-detection
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号