首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization Methods for the Integration of DAE in the Presence of Redundant Constraints
Authors:Neto  Maria Augusta  Ambrósio  Jorge
Affiliation:(1) FCTUC, Universidade de Coimbra, Coimbra, Portugal; E-mail;(2) IDMEC/IST, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal; E-mail
Abstract:The use of multibody formulations based on Cartesian or naturalcoordinates lead to sets of differential-algebraic equations that haveto be solved. The difficulty in providing compatible initial positionsand velocities for a general spatial multibody model and the finiteprecision of such data result in initial errors that must be correctedduring the forward dynamic solution of the system equations of motion.As the position and velocity constraint equations are not explicitlyinvolved in the solution procedure, any integration error leads to theviolation of these equations in the long run. Another problem that isvery often impossible to avoid is the presence of redundant constraints.Even with no initial redundancy it is possible for some systems toachieve singular configurations in which kinematic constraints becometemporarily redundant. In this work several procedures to stabilize thesolution of the equations of motion and to handle redundant constraintsare revisited. The Baumgarte stabilization, augmented Lagrangian andcoordinate partitioning methods are discussed in terms of theirefficiency and computational costs. The LU factorization with fullpivoting of the Jacobian matrix directs the choice of the set ofindependent coordinates, required by the coordinate partitioning method.Even when no particular stabilization method is used, a Newton–Raphsoniterative procedure is still required in the initial time step tocorrect the initial positions and velocities, thus requiring theselection of the independent coordinates. However, this initialselection does not guarantee that during the motion of the system otherconstraints do not become redundant. Two procedures based on the singlevalue decomposition and Gram–Schmidt orthogonalization are revisited forthe purpose. The advantages and drawbacks of the different procedures,used separately or in conjunction with each other and theircomputational costs are finally discussed.
Keywords:multibody systems  differential algebraic equations  constraint-vibration  pseudo-inverse
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号