首页 | 本学科首页   官方微博 | 高级检索  
     


Quadratic and Higher-Order Constraints in Energy-Conserving Formulations of Flexible Multibody Systems
Authors:Goicolea  José M  García Orden  Juan C
Affiliation:(1) E.T.S. Ingenieros de Caminos, Universidad Politécnica Madrid, Ciudad Universitaria, 28040 Madrid, Spain
Abstract:The treatment of constraints is considered here within the framework ofenergy-momentum conserving formulations for flexible multibody systems.Constraint equations of various types are an inherent component of multibodysystems, their treatment being one of the key performance features ofmathematical formulations and numerical solution schemes.Here we employ rotation-free inertial Cartesian coordinates of points tocharacterise such systems, producing a formulation which easily couples rigidbody dynamics with nonlinear finite element techniques for the flexiblebodies. This gives rise to additional internal constraints in rigid bodies topreserve distances. Constraints are enforced via a penalty method, which givesrise to a simple yet powerful formulation. Energy-momentum time integrationschemes enable robust long term simulations for highly nonlinear dynamicproblems.The main contribution of this paper focuses on the integration of constraintequations within energy-momentum conserving numerical schemes. It is shownthat the solution for constraints which may be expressed directly in terms ofquadratic invariants is fairly straightforward. Higher-order constraints mayalso be solved, however in this case for exact conservation an iterativeprocedure is needed in the integration scheme. This approach, together withsome simplified alternatives, is discussed.Representative numerical simulations are presented, comparing the performanceof various integration procedures in long-term simulations of practicalmultibody systems.
Keywords:multibody  flexible  nonlinear dynamics  penalty  energy-momentum
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号