首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于核规范变量分析的非线性故障诊断方法
引用本文:邓晓刚,田学民.基于核规范变量分析的非线性故障诊断方法[J].控制与决策,2006,21(10):1109-1113.
作者姓名:邓晓刚  田学民
作者单位:中国石油大学(华东)信息与控制工程学院,山东,东营,257061
基金项目:国家863计划项目(2004AA412050).
摘    要:提出一种基于核规范变量分析(KCVA)的非线性过程故障诊断方法.该方法使用核函数完成非线性空间到高维线性空间的映射,避免了高维空间中的数据处理和非线性映射函数的使用.在线性空间中使用规范变量分析(CVA)来辨识状态空闻模型,从数据中提取状态信息.3个监测量(Tr^2,Ts^2,Q)用来进行故障检测,同时使用贡献图分离故障变量,并判断故障原因.在CSTR系统上的仿真结果表明,KCVA方法比主元分析法(PCA)和CVA方法能更灵敏地检测到故障的发生,更有效地监控过程变化.

关 键 词:核规范变量分析  故障诊断  贡献图  非线性过程
文章编号:1001-0920(2006)10-1109-05
收稿时间:2005-07-19
修稿时间:2005-10-12

Nonlinear Process Fault Diagnosis Based on Kernel Canonical Variate Analysis
DENG Xiao-gang,TIAN Xue-min.Nonlinear Process Fault Diagnosis Based on Kernel Canonical Variate Analysis[J].Control and Decision,2006,21(10):1109-1113.
Authors:DENG Xiao-gang  TIAN Xue-min
Institution:College of Information and Control Engineering, China University of Petroleum, Dongying 257061, China.
Abstract:A new method based on kernel canonical variate analysis(KCVA) is proposed for nonlinear process fault diagnosis.This method uses the kernel function to map the nonlinear space into a linear high dimension space.The application of the kernel function can avoid nonlinear mapping function and data processing in high dimension spaces.Canonical variate analysis(CVA) is applied to identify a state space model in linear space and state information is extracted.Three monitoring statistics T~2_r,T~2_s and Q are built for fault detection.Contribution plot is used to isolate faulty variables and locate fault source.The simulation results on CSTR system indicate that KCVA can detect fault more easily than principal component analysis and canonical variate analysis.
Keywords:Kernel canonical variate analysis  Fault diagnosis  Contribution plot  Nonlinear process
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制与决策》浏览原始摘要信息
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号