首页 | 本学科首页   官方微博 | 高级检索  
     检索      

微粒群算法综述
引用本文:谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134.
作者姓名:谢晓锋  张文俊  杨之廉
作者单位:清华大学,微电子学研究所,北京,100084
摘    要:讨论微粒群算法的开发与应用。首先回顾从1995年以来的开发过程,然后根据一些已有的测试结果对其参数设置进行系统地分析,并讨论一些非标准的改进手段,如簇分解、选择方法、邻域算子、无希望/重新希望方法等。介绍了一些常用的测试函数,以及与其他演化算法的比较。最后讨论了一些已经开发和在将来有希望的领域中的应用。

关 键 词:微粒群算法  演化计算  人工生命  综述
文章编号:1001-0920(2003)02-0129-06
修稿时间:2001年11月2日

Overview of particle swarm optimization
XIE Xiao-feng,ZHANG Wen-jun,YANG Zhi-lian.Overview of particle swarm optimization[J].Control and Decision,2003,18(2):129-134.
Authors:XIE Xiao-feng  ZHANG Wen-jun  YANG Zhi-lian
Abstract:The developments and applications related to particle swarm optimization (PSO) are discussed . Firstly, developments in the particle swarm optimization since 1995 are reviewed. Then parameter settings are analyzed systematically according to some existed testing results. Some improvement methods, such as cluster analysis, selection, neighborhood operator, no-hope/re-hope method, etc., are discussed. Some common test functions and the comparisons between PSO and others evolutionary algorithms are introduced. Finally, applications, both in the developed areas and the promising future application areas, are reviewed.
Keywords:Particle swarm optimization  Evolutionary computation  Artificial life  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号