首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient heterogeneous execution on large multicore and accelerator platforms: Case study using a block tridiagonal solver
Authors:Alfred J Park  Kalyan S Perumalla
Affiliation:Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
Abstract:The algorithmic and implementation principles are explored in gainfully exploiting GPU accelerators in conjunction with multicore processors on high-end systems with large numbers of compute nodes, and evaluated in an implementation of a scalable block tridiagonal solver. The accelerator of each compute node is exploited in combination with multicore processors of that node in performing block-level linear algebra operations in the overall, distributed solver algorithm. Optimizations incorporated include: (1) an efficient memory mapping and synchronization interface to minimize data movement, (2) multi-process sharing of the accelerator within a node to obtain balanced load with multicore processors, and (3) an automatic memory management system to efficiently utilize accelerator memory when sub-matrices spill over the limits of device memory. Results are reported from our novel implementation that uses MAGMA and CUBLAS accelerator software systems simultaneously with ACML (2013)  2] for multithreaded execution on processors. Overall, using 940 nVidia Tesla X2090 accelerators and 15,040 cores, the best heterogeneous execution delivers a 10.9-fold reduction in run time relative to an already efficient parallel multicore-only baseline implementation that is highly optimized with intra-node and inter-node concurrency and computation–communication overlap. Detailed quantitative results are presented to explain all critical runtime components contributing to hybrid performance.
Keywords:Tridiagonal solver  Linear algebra  GPU  Accelerator  Heterogeneous execution  Memory management
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号