首页 | 本学科首页   官方微博 | 高级检索  
     检索      

自适应蚁群算法
引用本文:张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3.
作者姓名:张纪会  高齐圣  徐心和
作者单位:1. 东北大学控制仿真中心·沈阳,110006
2. 青岛化工学院计算机系·青岛,266042
基金项目:8 63 /CIMS主题!( 863 -5 11-95 0 8-0 0 4)
摘    要:蚁群算法是由鄣大利得M.Dorigo等人首先提出的一种新型的模拟进化算法,初步的研究已经表明该算法具有许多优良的性质,为求解算杂的组合优化问题提供了一种新思路,此方法已经引起了众多学者的研究兴趣,但同时也存在着一些缺点,如需要较长的计算时间,容易出现停滞现象等,目前国内对此研究尚少,为此,本文对景中算法的研究现状作一综述,希望能够对相关研究起到一定的启发作用。

关 键 词:蚁群算法  强化学习  旅行商问题  组合优化问题
修稿时间:6/2/1999 12:00:00 AM

A Self-Adaptive Ant Colony Algorithm
ZHANG Ji-hui,GAO Qi-sheng and XU Xin-he.A Self-Adaptive Ant Colony Algorithm[J].Control Theory & Applications,2000,17(1):1-3.
Authors:ZHANG Ji-hui  GAO Qi-sheng and XU Xin-he
Institution:Control & Simulation Center, Northeastern University, Shenyang, 110006, P.R.China;Department of Computer, Qingdao Institute of Chemical Technology, Qingdao, 266042, P.R.China;Control & Simulation Center, Northeastern University, Shenyang, 110006, P.R.China
Abstract:Ant colony algorithm is a novel simulated evolutionary algorithm which is proposed first by Italian scholars M.Dorigo, A.Colormi, and V. Maniezzo. Preliminary study has shown that it has many promising futures. It provides a possible way for complicated combinatorial optimization problems,so it interests many scholars. Unfortunately, however it has some shortcomings such as needing much time and easier occuring of stagnation behaviour. In view of the deficiency of research of ant colony algorithm at home, this paper presents a brief review on the research state of ant colony algorithm with hope to be helpful to the corresponding research work.
Keywords:ant colony algorithm  reinforcement learning  traveling salesman problem
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号