首页 | 本学科首页   官方微博 | 高级检索  
     检索      

粒子滤波进展与展望
引用本文:杨小军,潘泉,王睿,张洪才.粒子滤波进展与展望[J].控制理论与应用,2006,23(2):261-267.
作者姓名:杨小军  潘泉  王睿  张洪才
作者单位:1. 西北工业大学,自动化学院,陕西,西安,710072;西安电子科技大学,电子工程学院,陕西,西安,710071
2. 西北工业大学,自动化学院,陕西,西安,710072
基金项目:国家自然科学基金资助项目(60404011,60372085)
摘    要:粒子滤波器是基于序贯M onte Carlo仿真方法的非线性滤波算法,本文对粒子滤波器的研究现状和研究进展做了综述,详细论述了粒子滤波原理、收敛性、应用及进展.首先在Bayes框架内分析了序贯重要性采样原理,重要性分布函数的选择,以及重采样方法,总结了粒子滤波器发展过程中的各种改进策略和新变种,讨论了粒子滤波器在各个领域的应用及进展,最后介绍了粒子方法的新发展,新动态,并对未来发展方向做了进一步的展望.

关 键 词:Bayes估计  粒子滤波器  最优滤波  序贯MonteCarlo方法
文章编号:1000-8152(2006)02-0261-07
收稿时间:8/4/2004 12:00:00 AM
修稿时间:2004-08-042005-06-17

Development and prospect of particle filtering
YANG Xiao-jun,PAN Quan,WANG Rui,ZHANG Hong-cai.Development and prospect of particle filtering[J].Control Theory & Applications,2006,23(2):261-267.
Authors:YANG Xiao-jun  PAN Quan  WANG Rui  ZHANG Hong-cai
Institution:Collage of Automaton,Northwestern Polytechnical University,Xi'an Shaanxi 710072,China;School of Electronic Engineering,Xidian University, Xi'an Shaanxi 710071,China
Abstract:Particle filtering is a sequential Monte Carlo simulation based on nonlinear filtering algorithm.An overview of the status and development of research on particle filtering is presented.The principle,convergence,application and evolution of particle filtering are described in detail.First,the principle of sequential importance-sampling,the choice of importance distribution function,and the method of re-sampling are analyzed within Bayesian framework.Secondly,the improvement methods and novel variations of particle filtering are then summarized.Thirdly,the application and development in various areas are reviewed.Fourthly,the novel extension and trends of particle filtering are illustrated.Finally,further research prospects are introduced.
Keywords:Bayesian estimation  particle filtering  optimal filtering  sequential Monte Carlo methods
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《控制理论与应用》浏览原始摘要信息
点击此处可从《控制理论与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号