首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic modeling of a CPG-governed multijoint robotic fish
Authors:Junzhi Yu  Ming Wang  Zongshuai Su  Min Tan  Jianwei Zhang
Affiliation:1. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences , Beijing , 100190 , P.R. China junzhi.yu@ia.ac.cn;3. School of Information and Electrical Engineering, Shandong Jianzhu University , Jinan , 250101 , P.R. China;4. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences , Beijing , 100190 , P.R. China;5. Department of Informatics , University of Hamburg , Hamburg , 22527 , Germany
Abstract:This paper is devoted to the formulation of a dynamic model of a serially connected multijoint robotic fish with a pair of wing-like pectoral fins, in which the whole robot is treated as a moving multilink rigid body in fluids. Considering that the thrust of fish mainly results from the force of trailing vortex, added lateral pressure, and leading edge suction force, the dynamic equations of the swimming fish have been derived by summing up the longitudinal force, lateral force, and yaw moment on each propulsive component in the context of Lagrangian mechanics. Along with the bio-inspired central pattern generators (CPGs) as the locomotor controller, the overall dynamic propulsive characteristics of the swimming robot are then estimated in a mathematical environment (i.e. Mathematica). Finally, simulations and experiments are carried out to validate the effectiveness of the built dynamic model. Results demonstrate that the CPG-coupled dynamic model provides a fairly good guide to seeking pragmatic backward swimming patterns for a carangiform robotic fish.
Keywords:dynamic modeling  robotic fish  motion control  central pattern generator (CPG)  backward swimming
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号